Exercise 5

Derive expression (6), Sec. 3, for the quotient z_{1} / z_{2} by the method described just after it.

Solution

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ and assume x_{1}, x_{2}, y_{1}, and y_{2} are real numbers.

$$
\begin{align*}
\frac{z_{1}}{z_{2}} & =\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}} \\
& =\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)} \\
& =\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{x_{2}^{2}-i^{2} y_{2}^{2}} \\
& =\frac{x_{1} x_{2}-i x_{1} y_{2}+i x_{2} y_{1}-i^{2} y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}} \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}+i\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}} \\
& =\left(x_{2}^{2}+y_{2}^{2}\right)^{-1}\left[x_{1} x_{2}+y_{1} y_{2}+i\left(x_{2} y_{1}-x_{1} y_{2}\right)\right] \\
& =\left(x_{2}^{2}+y_{2}^{2}\right)^{-1}\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{2}^{2}+y_{2}^{2}\right)^{-1}\left(x_{2} y_{1}-x_{1} y_{2}\right) \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}} \tag{6}
\end{align*}
$$

This is Equation (6) on page 6.

